Refine Your Search

Search Results

Technical Paper

Exhaust Hydrocarbon Speciation from a Single-Cylinder Compression Ignition Engine Operating with In-Cylinder Blending of Gasoline and Diesel Fuels

2012-04-16
2012-01-0683
Diesel aided by gasoline low temperature combustion offers low NOx and low soot emissions, and further provides the potential to expand engine load range and improve engine efficiency. The diesel-gasoline operation however yields high unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions. This study aims to correlate the chemical origins of the key hydrocarbon species detected in the engine exhaust under diesel-gasoline operation. It further aims to help develop strategies to lower the hydrocarbon emissions while retaining the low NOx, low soot, and efficiency benefits. A single-cylinder research engine was used to conduct the engine experiments at a constant engine load of 10 bar nIMEP with a fixed engine speed of 1600 rpm. Engine exhaust was sampled with a FTIR analyzer for speciation investigation.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

2011-08-30
2011-01-1814
In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Technical Paper

Empirical Study of Energy in Diesel Combustion Emissions with EGR Application

2011-08-30
2011-01-1817
Modern diesel engines were known for producing ultra-low levels of hydrogen and hydrocarbons. However, as emission control techniques such as exhaust gas recirculation (EGR) are implemented to meet stringent NOx standards, the resulting increase in partial-combustion products can be significant in quantity both as pollutants and sources of lost engine efficiency. In this work, a modern common-rail diesel engine was configured to investigate the EGR threshold for elevated carbon monoxide, hydrocarbon, and hydrogen emissions at fixed loads and fixed heat-release phasing. It is noted that increase in hydrocarbons, in particular light hydrocarbons (such as methane, ethylene, and acetylene) was concurrent with ultra-low NOx emissions. Hydrogen gas can be emitted in significant quantities with the application of very high EGR. Under ultra-low NOx production conditions for medium and high load conditions, the light hydrocarbon species can account for the majority of hydrocarbon emissions.
Journal Article

Impact of Fuel Properties on Diesel Low Temperature Combustion

2011-04-12
2011-01-0329
Extensive empirical work indicates that exhaust gas recirculation (EGR) is effective to lower the flame temperature and thus the oxides of nitrogen (NOx) production in-cylinder in diesel engines. Soot emissions are reduced in-cylinder by improved fuel/air mixing. As engine load increases, higher levels of intake boost and fuel injection pressure are required to suppress soot production. The high EGR and improved fuel/air mixing is then critical to enable low temperature combustion (LTC) processes. The paper explores the properties of the Fuels for Advanced Combustion Engines (FACE) Diesel, which are statistically designed to examine fuel effects, on a 0.75L single cylinder engine across the full range of load, spanning up to 15 bar IMEP. The lower cetane number (CN) of the diesel fuel improved the mixing process by prolonging the ignition delay and the mixing duration leading to substantial reduction of soot at low to medium loads, improving the trade-off between NOx and soot.
Technical Paper

Model Predictive Control of Exhaust Gas Recirculation Valve

2010-04-12
2010-01-0240
Exhaust Gas Recirculation (EGR) valves have been used in diesel engine operation to reduce NOx emissions. In EGR valve operation, the amount of exhaust gas re-circulating back into the intake manifold is controlled through the open position of the valve plate to keep the combustion temperature lower for NOx emission reduction. Different methods have been proposed to control the EGR valve. However, most of the approaches do not have the desired accuracy and the response time, which is critical for the after-treatment performance in low temperature diesel combustion. In this paper, the model of a motor driven EGR valve is first identified through experiments and then the Generalized Predictive Control (GPC) method which is an effective Model Predictive Control (MPC) method is applied to control the plate position of the valve.
Technical Paper

Diesel EGR Cooler Fouling at Freeway Cruise

2009-06-15
2009-01-1840
Cooled exhaust gas recirculation (EGR) is effective in the reduction of in-cylinder formation of oxides of nitrogen (NOx). However, at conventional in-cylinder high temperature diesel combustion high load operating conditions, the engine-out exhaust emissions of particulate matter, which consists of smoke, soot and soluble organic fraction, tend to increase. As the EGR is applied at medium to high loads, therefore, the small carbonaceous particles and heavy hydrocarbons can deposit on the cool surfaces of EGR coolers mainly through a complex combination of thermophoresis, condensation, diffusion and turbulent impaction. Consequently, an insulation layer develops on the cooler surfaces and deteriorates EGR cooler function. As the deposits build up, the cooler effectiveness decreases and pressure drop increases thereby increasing the intake charge temperature. Consequently, the in-cylinder formation of NOx increases.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

2008-06-23
2008-01-1670
Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Technical Paper

Diesel EGR Fuel Reformer Improvement with Flow Reversal and Central Fueling

2008-06-23
2008-01-1607
Empirical work has been conducted with an EGR fuel reformer configured in a flow reversal and central fueling embedment to improve the fuel dispersion quality and the reforming energy efficiency. Comprehensive comparison analyses are made between the unidirectional flow and the periodic reversal flow embodiments of similar substrate size and properties; and between the inlet and central heating schemes. With a unidirectional EGR reformer, a large amount of supplemental heating is commonly required prior to reforming. The central-fueling and flow-reversal embedment in this study is shown to significantly reduce the supplemental heating energy. The EGR cooler loading for the two strategies is also analyzed. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions.
Technical Paper

Low Temperature Combustion of Neat Biodiesel Fuel on a Common-rail Diesel Engine

2008-04-14
2008-01-1396
The fatty acid alkyl esters derived from plants, rendered fats/oils and waste restaurant greases, commonly known as biodiesel, are renewable alternative fuels that may fulfill the demand gap caused by the depleting fossil diesel fuels. The combustion and emission characteristics of neat biodiesel fuels were investigated on a single cylinder of a 4-cylinder Ford common-rail direct injection diesel engine, which cylinder has been configured to have independent exhaust gas recirculation (EGR), boost and back pressures and exhaust gas sampling. The fatty acid methyl esters derived from Canola oil, soybean oil, tallow and yellow grease were first blended. Biodiesel engine tests were then conducted under the independent control of the fuel injection, EGR, boost and back pressure to achieve the low temperature combustion mode. Multi-pulse early-injections were employed to modulate the homogeneity history of the cylinder charge.
Technical Paper

Neat Biodiesel Fuel Engine Tests and Preliminary Modelling

2007-04-16
2007-01-0616
Engine performance and emission comparisons were made between the use of 100% soy, Canola and yellow grease derived biodiesel fuels and an ultra-low sulphur diesel fuel in the oxygen deficient regions, i.e. full or high load engine operations. Exhaust gas recirculation (EGR) was extensively applied to initiate low temperature combustion. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. The intake temperature, pressure, and EGR levels were modulated to improve the engine fuel efficiency and exhaust emissions. Furthermore, a preliminary ignition delay correlation under the influence of EGR was developed. Preliminary low temperature combustion modelling of the biodiesel and diesel fuels was also conducted. The research intends to achieve simultaneous reductions of nitrogen oxides and soot emissions in modern production diesel engines when biodiesel is applied.
Technical Paper

An Investigation of EGR Treatment on the Emission and Operating Characteristics of Modern Diesel Engines

2007-04-16
2007-01-1083
Tests are conducted to improve the use of exhaust gas recirculation on a single cylinder diesel engine with EGR stream treatment techniques that include intake heating, combustible substance oxidation, catalytic fuel reforming, and partial bypass-flow control. In parallel with the empirical work, theoretical modeling analyses are performed to investigate the effectiveness of the reforming process and the combined effects on the overall system efficiency. The research is aimed at stabilizing and expanding the limits of heavy EGR during steady and transient operations so that the individual limiting conditions of EGR can be better identified. Additionally, the heavy EGR is applied to enable in-cylinder low temperature combustion. The effectiveness of EGR treatment on engine emission and operating characteristics are therefore reported.
Technical Paper

Influence of Biodiesel Fuel on Diesel Engine Performance and Emissions in Low Temperature Combustion

2006-10-16
2006-01-3281
The exhaust emission and performance characteristics of a 100% biodiesel fuel was evaluated on a single cylinder direct injection diesel engine that had been modified to allow multi-pulse diesel fuel injection at the intake port and independent control of intake heating, exhaust gas recirculation and throttling. Firstly, conventional single-shot direct injection tests were conducted and comparisons made between the use of an ultra-low sulphur diesel fuel and the biodiesel fuel. Secondly, tests for the premixed combustion of neat biodiesel were performed. Exhaust gas recirculation was applied extensively to initiate the low temperature combustion for the conventional in-cylinder single injection operation and to moderate the timing of the homogeneous charge compression ignition for the intake-port sequential injection. Because of the high viscosity and low volatility of the biodiesel, pilot-ignited homogeneous charge compression ignition was used.
Technical Paper

The Potential for Reducing CO and NOx Emissions from an HCCI Engine Using H2O2 Addition

2003-10-27
2003-01-3204
The effects of hydrogen peroxide addition on iso-octane/air Homogeneous Charge Compression Ignition (HCCI) combustion have been investigated analytically. Particular attention was focused on the predications involving homogeneous gas-phase kinetics. Use was made of Peters' iso-octane mechanism in CHEMKIN and convective heat transfer was included in the analyses. This enabled the influences that H2O2 addition has on species concentration and ignition promotion and hence exhaust emissions to be determined. It was found that both CO and NOx emission levels could be ameliorated. The former effect is considered to be a result of the decomposition of H2O2 into OH intermediate species and hence reducing the time to ignition and the onset of combustion.
X